Skip to main content

Finite Element MethodLaajuus (5 cr)

Code: AT00BX29

Credits

5 op

Objective

Student is able to
- regognize basic prinsiples of machine elements
- use chosen application softaware in element design and matrix calculations

Enrollment

20.11.2024 - 12.01.2025

Timing

01.01.2025 - 30.04.2025

Number of ECTS credits allocated

5 op

Virtual portion

5 op

Mode of delivery

Distance learning

Unit

Faculty of Technology (LAB)

Campus

E-campus

Teaching languages
  • Finnish
Seats

0 - 50

Degree programmes
  • Bachelor's Degree Programme in Mechanical Engineering (in Finnish)
Teachers
  • Tuomo Liimatainen
Scheduling groups
  • Harjoitukset 1 (Size: 0. Open UAS: 0.)
Groups
  • TLTIKONE22KM
Small groups
  • Practice 1

Learning outcomes

Student is able to
- regognize basic prinsiples of machine elements
- use chosen application softaware in element design and matrix calculations

Implementation and methods of teaching

Guidance in Zoom 2h/week. Excercises, no exam.
Softwares:
MathCAD
SolidWorks Simulation
FEMAP & Multiframe (option)

Exam retakes

Course retake during next academic year

Additional information for students: previous knowledge etc.

Prior knowledge.
Contents of following courses:
Lujuusoppi
Konetekniikan mekaniikka
Statiikka
Mathematics in Technology 1 & 2

Assessment criteria

Evaluation based on individual excercises

Assessment scale

1-5

Failed (0)

Does not meet minimum criteria

Assessment criteria: level 1 (assessment scale 1–5)

Minimum level of competence. Student is able to perform calculations according to the competence objectives for simple basic cases and obtain reliable results. In general level; understands principles, terminology, shortcomings, and limitations of the finite element method and can identify typical problem situations associated with the method.

Assessment criteria: level 3 (assessment scale 1–5)

Proficient level of competence. Student is able to conduct realiable analyses in accordance with competency objectives, able to report results clearly, and capable of assessing reliability of the obtained results. Understands the mathematical principles, terminology, shortcomings, and limitations of the finite element method and can identify typical problem situations associated with the method.

Assessment criteria: level 5 (assessment scale 1–5)

Excellent level of competence. Student is capable of producing reliable analyses for various structures and can assess the applicability of used methods to different structural analysis cases. Able to report results clearly and coherently, critically evaluate the reliability of the results and present conclusions and improvement suggestions based on the results. Understands and can apply mathematical principles of the finite element method. Is familiar with the terminology, shortcomings, and limitations of the method extensively, and can identify and solve typical problem situations associated with the method.

Enrollment

06.05.2024 - 02.09.2024

Timing

02.09.2024 - 13.12.2024

Number of ECTS credits allocated

5 op

Mode of delivery

Contact teaching

Unit

Faculty of Technology (LAB)

Campus

Lappeenranta Campus

Teaching languages
  • Finnish
Degree programmes
  • Bachelor's Degree Programme in Mechanical Engineering (in Finnish)
Teachers
  • Tuomo Liimatainen
Scheduling groups
  • Harjoitukset 1 (Size: 0. Open UAS: 0.)
  • Verkkoluento 1 (Size: 0. Open UAS: 0.)
Groups
  • TLPRKONE21S
Small groups
  • Practice 1
  • Online lecture 1

Learning outcomes

Student is able to
- regognize basic prinsiples of machine elements
- use chosen application softaware in element design and matrix calculations

Implementation and methods of teaching

Guidance in classroom 2h/week. Excercises, no exam.
Softwares:
MathCAD
SolidWorks Simulation
FEMAP

Exam retakes

Course retake during next academic year

Additional information for students: previous knowledge etc.

Prior knowledge.
Contents of following courses:
Lujuusoppi
Konetekniikan mekaniikka
Statiikka
Mathematics in Technology 1 & 2

Assessment criteria

Evaluation based on individual excercises

Assessment scale

1-5

Failed (0)

Does not meet minimum criteria

Assessment criteria: level 1 (assessment scale 1–5)

Minimum level of competence. Student is able to perform calculations according to the competence objectives for simple basic cases and obtain reliable results. In general level; understands principles, terminology, shortcomings, and limitations of the finite element method and can identify typical problem situations associated with the method.

Assessment criteria: level 3 (assessment scale 1–5)

Proficient level of competence. Student is able to conduct realiable analyses in accordance with competency objectives, able to report results clearly, and capable of assessing reliability of the obtained results. Understands the mathematical principles, terminology, shortcomings, and limitations of the finite element method and can identify typical problem situations associated with the method.

Assessment criteria: level 5 (assessment scale 1–5)

Excellent level of competence. Student is capable of producing reliable analyses for various structures and can assess the applicability of used methods to different structural analysis cases. Able to report results clearly and coherently, critically evaluate the reliability of the results and present conclusions and improvement suggestions based on the results. Understands and can apply mathematical principles of the finite element method. Is familiar with the terminology, shortcomings, and limitations of the method extensively, and can identify and solve typical problem situations associated with the method.

Enrollment

06.05.2024 - 06.09.2024

Timing

02.09.2024 - 13.12.2024

Number of ECTS credits allocated

5 op

Virtual portion

5 op

Mode of delivery

Distance learning

Unit

Faculty of Technology (LAB)

Campus

E-campus

Teaching languages
  • Finnish
Degree programmes
  • Bachelor's Degree Programme in Mechanical Engineering (in Finnish)
Teachers
  • Tuomo Liimatainen
Scheduling groups
  • Verkkoluento 1 (Size: 0. Open UAS: 0.)
Groups
  • TLTIKONE21S
Small groups
  • Online lecture 1

Learning outcomes

Student is able to
- regognize basic prinsiples of machine elements
- use chosen application softaware in element design and matrix calculations

Implementation and methods of teaching

Guidance in Zoom 2h/week. Excercises, no exam.
Softwares:
MathCAD
SolidWorks Simulation
FEMAP

Exam retakes

Course retake during next academic year

Additional information for students: previous knowledge etc.

Prior knowledge.
Contents of following courses:
Lujuusoppi
Konetekniikan mekaniikka
Statiikka
Mathematics in Technology 1 & 2

Assessment criteria

Evaluation based on individual excercises

Assessment scale

1-5

Failed (0)

Does not meet minimum criteria

Assessment criteria: level 1 (assessment scale 1–5)

Minimum level of competence. Student is able to perform calculations according to the competence objectives for simple basic cases and obtain reliable results. In general level; understands principles, terminology, shortcomings, and limitations of the finite element method and can identify typical problem situations associated with the method.

Assessment criteria: level 3 (assessment scale 1–5)

Proficient level of competence. Student is able to conduct realiable analyses in accordance with competency objectives, able to report results clearly, and capable of assessing reliability of the obtained results. Understands the mathematical principles, terminology, shortcomings, and limitations of the finite element method and can identify typical problem situations associated with the method.

Assessment criteria: level 5 (assessment scale 1–5)

Excellent level of competence. Student is capable of producing reliable analyses for various structures and can assess the applicability of used methods to different structural analysis cases. Able to report results clearly and coherently, critically evaluate the reliability of the results and present conclusions and improvement suggestions based on the results. Understands and can apply mathematical principles of the finite element method. Is familiar with the terminology, shortcomings, and limitations of the method extensively, and can identify and solve typical problem situations associated with the method.

Enrollment

15.05.2023 - 01.09.2023

Timing

01.08.2023 - 31.12.2023

Number of ECTS credits allocated

5 op

Mode of delivery

Contact teaching

Unit

Faculty of Technology (LAB)

Campus

Lappeenranta Campus

Teaching languages
  • Finnish
Degree programmes
  • Bachelor's Degree Programme in Mechanical Engineering (in Finnish)
Teachers
  • Timo Ryynänen
Scheduling groups
  • Luennot 1 (Size: 0. Open UAS: 0.)
Groups
  • TLPRKONE20S
Small groups
  • Luennot 1

Learning outcomes

Student is able to
- regognize basic prinsiples of machine elements
- use chosen application softaware in element design and matrix calculations

Assessment scale

1-5

Enrollment

21.11.2022 - 08.01.2023

Timing

01.01.2023 - 31.07.2023

Number of ECTS credits allocated

5 op

Mode of delivery

Contact teaching

Unit

Faculty of Technology (LAB)

Campus

Lahti Campus

Teaching languages
  • Finnish
Degree programmes
  • Bachelor's Degree Programme in Mechanical Engineering (in Finnish)
Teachers
  • Timo Ryynänen
Scheduling groups
  • Toteutuksen opetusryhmä 1 (Size: 0. Open UAS: 0.)
Groups
  • 07KTT20K
Small groups
  • Toteutuksen opetusryhmä 1

Learning outcomes

Student is able to
- regognize basic prinsiples of machine elements
- use chosen application softaware in element design and matrix calculations

Assessment scale

1-5