Siirry suoraan sisältöön

Tekniikan koulutus (ylempi AMK), IoT:stä tekoälyyn

Tutkinto:
Tekniikan ylempi ammattikorkeakoulututkinto

Tutkintonimike:
Insinööri (ylempi AMK)

Laajuus:
60 op

Insinööri (ylempi AMK), IoT:stä tekoälyyn 23S, verkko-opinnot
Tunnus
(TLTIYITT23SV)

Insinööri (ylempi AMK), IoT:stä tekoälyyn 24K, verkko-opinnot
Tunnus
(TLTIYITT24KV)
Insinööri (ylempi AMK), IoT:stä tekoälyyn 22S, verkko-opinnot
Tunnus
(TLTIYITT22SV)
Insinööri (ylempi AMK), IoT:stä tekoälyyn 21S, Lahti
Tunnus
(YITT21SLTI)
Ilmoittautumisaika

06.05.2024 - 25.08.2024

Ajoitus

26.08.2024 - 29.08.2024

Opintopistemäärä

5 op

Virtuaaliosuus

5 op

Toteutustapa

Etäopetus

Yksikkö

Teknologia (LAB)

Toimipiste

Verkkokampus

Opetuskielet
  • Suomi
Paikat

10 - 60

Koulutus
  • Tekniikan alan koulutus (ylempi AMK), Uudistava johtaminen
  • Tekniikan koulutus (ylempi AMK), IoT:stä tekoälyyn
Opettaja
  • Minna Asplund
  • Henri Koukka
  • Erjaleena Koljonen
Opetusryhmät
  • Luennot 1 (Koko: 100. Avoin AMK: 0.)
Ryhmät
  • TLTIYITT24KV
    IoT:stä tekoälyyn (YAMK) 24KV Lahti
  • LLPRYASLI23KV
    Asiakassuuntautuneen liiketoiminnan kehittäminen (YAMK) 23KV Lappeenranta
  • LLTIYLDR23SV
    Liiketoiminnan digitaaliset ratkaisut (YAMK) 23SV Lahti
  • TLTIYUJT24SV
    Uudistava johtaminen (YAMK), tekniikan ala 24SV Lahti
Pienryhmät
  • Luennot 1

Osaamistavoitteet

Opiskelija osaa
- tutkia datan ominaisuuksia jatkokäsittelyn kannalta
- hyödyntää matemaattisia menetelmiä datan analysoinnissa
- hyödyntää modernia tilastollista työkalua
- visualisoida datan ja analyysin jatkokäyttöä hyödyntävällä tavalla
- tuottaa toistettavan tutkimuksen

Toteutustapa ja opetusmenetelmät

Kurssi toteutetaan yhteensä neljän päivän intensiiviopetuksena. Kaksi viikkoa ennen intensiiviviikkoa avautuvat kurssin ennakkotehtävät.
Opetusmenetelminä käytetään etäopetusta luennoiden, sekä esimerkkeihin perustuvia soveltavia harjoituksia. Mahdollisuuksien mukaan myös äänitteitä.

Ajoitus ja läsnäolo

Intensiivijakso on viikolla 35, ma 26.8. - to 29.8.2024.

Oppimateriaali ja suositeltava kirjallisuus

Opiskelija etsii itsenäisesti sekä kirjallisuuslähteitä että internetin kautta löydettävissä olevia luotettavia lähteitä. Opintojaksolla on esitysmateriaalia.

Uusintamahdollisuudet

Opintojaksolla ei ole tenttiä.

Oppimisympäristö

Kurssin informointi- ja järjestely-ympäristönä käytetään virtuaalista Moodle verkko-oppimisalustaa.

Opiskelijan ajankäyttö ja kuormitus

Yhteisiä tunteja on 23. Kokonaisajankäyttö opiskelijalle on mitoitettu keskimäärin 135 tunniksi.

Sisältö

Kurssi pitää sisällään
- datan tutkimista tilastollisten tunnuslukujen ja visualisoinnin avulla
- estimoinnin perusteet ja tilastolliset testit
- R analytiikan käyttö
- Datan visualisointi web-ympäristössä.

Lisätietoja opiskelijalle: mm. edeltävä osaaminen

Lukion lyhyttä matematiikkaa vastaava osaaminen.
Ohjelmoinnin perusteet tai vastaava osaaminen.

Arviointimenetelmät

Arvioinnin perusteena käytetään opintojaksolla tehtäväksi annettujen tehtävien suorittamisen tasoa.

Arviointiasteikko

1-5

Hylätty (0)

Opiskelija ei ole saavuttanut opintojakson osaamistavoitteita.

Arviointikriteerit: taso 1: (arviointiasteikko 1-5)

Opiskelija osaa käyttää hyväkseen saatavilla olevia tietolähteitä sekä tehdä itsenäisiä ratkaisuja jossain määrin.
Palautettavat tehtävät tulee olla suoritettuina läpipääsyn tasolla.

Arviointikriteerit: taso 3 (arviointiasteikko 1-5)

Opiskelija osaa käyttää itsenäisesti hyväkseen ja soveltaa käytettävissä olevia tietolähteitä.
Palautettavat tehtävät tulee olla suoritettuina siten, että ne ovat tehtäväksiannon mukaisesti oikein ja hyväksytysti suoritettuina.

Arviointikriteerit: taso 5 (arviointiasteikko 1-5)

Opiskelija osaa käyttää hyväkseen, kriittisesti arvioida ja soveltaa käytettävissä olevia tietolähteitä.
Opiskelijalta vaaditaan aktiivista osallistumista keskusteluun, hän on positiivinen keskutelukumppani sekä edistää keskustelua olennaiseen suuntaan ja perustelee mielipiteensä.
Palautettavat tehtävät tulee olla suoritettuina siten, että ne ylittävät annetun tehtäväksiannon tavoitteet.

Ilmoittautumisaika

06.05.2024 - 30.08.2024

Ajoitus

02.12.2024 - 05.12.2024

Opintopistemäärä

5 op

Virtuaaliosuus

5 op

Toteutustapa

Etäopetus

Yksikkö

Teknologia (LAB)

Toimipiste

Verkkokampus, Lahti

Opetuskielet
  • Suomi
Paikat

15 - 35

Koulutus
  • Tekniikan koulutus (ylempi AMK), IoT:stä tekoälyyn
Opettaja
  • Matti Welin
  • Henri Koukka
Opetusryhmät
  • Luennot 1 (Koko: 100. Avoin AMK: 0.)
Ryhmät
  • TLTIYITT24KV
    IoT:stä tekoälyyn (YAMK) 24KV Lahti
Pienryhmät
  • Luennot 1

Osaamistavoitteet

Opiskelija osaa
- tunnistaa digitaalisten kaksosten toimintaperiaatteita sekä sovelluskohteita
- tunnistaa pelin kaltaisia aktiviteetteja sekä pelillisiä mahdollisuuksia digitaalisten kaksosten toimintaympäristöissä
- tunnistaa pelimoottorien tarjoamat mahdollisuudet digitaalisten kaksosten esityskerroksessa
- toteuttaa yksinkertaisen digitaalisen kaksosen nykyaikaisella pelimoottorilla

Toteutustapa ja opetusmenetelmät

Opintojakso koostuu intensiiviviikosta (Ma-To) sekä pakollisista esi- ja jälkitehtävistä.
Opetusmenetelminä käytetään etäopetusta luennoiden, sekä esimerkkeihin perustuvia soveltavia harjoituksia. Osa opintojakson tehtävistä toteutetaan ryhmätyönä. Luennot tallennetaan mahdollisuuksien mukaan.

Ajoitus ja läsnäolo

Intensiivijakso pidetään ma 2.12.2024 - to 5.12.2024.
Läsnäolo on suotavaa, lähes pakollista erityisesti ryhmätyön osalta.

Oppimateriaali ja suositeltava kirjallisuus

Opiskelija etsii itsenäisesti sekä kirjallisuuslähteitä että internetin kautta löydettävissä olevia luotettavia lähteitä. Opintojaksolla käytettävä esitysmateriaalia on käytettävissä lähiviikosta alkaen.

Uusintamahdollisuudet

Opintojaksolla ei ole tenttiä.

Oppimisympäristö

Moodle oppimisalusta sekä zoom.

Opiskelijan ajankäyttö ja kuormitus

Kokonaisajankäyttö on keskimäärin 135 tuntia, josta lähiopetusta 24 h.

Sisältö

Opintojaksolla perehdytään Digitaalisten kaksosten problematiikkaan ja toteutustapoihin datan esittämisen näkökulmasta. Lisäksi tutustutaan pelillisyyden tuomaan lisäarvoon, nykyaikaiseen pelimoottoriin, sen arkkitehtuuriin ja toimintatapaan. Kurssilla toteutetaan pienimuotoinen digitaalinen kaksonen, joka näyttää simuloitua dataa reaaliaikaisesti.

Lisätietoja opiskelijalle: mm. edeltävä osaaminen

Ymmärrys ohjelmoinnista.

Arviointimenetelmät

Arvioinnin perusteena käytetään opintojaksolla tehtäväksi annettujen tehtävien suorittamisen tasoa.

Arviointiasteikko

1-5

Hylätty (0)

Opiskelija ei ole saavuttanut opintojakson osaamistavoitteita.

Arviointikriteerit: taso 1: (arviointiasteikko 1-5)

Opiskelija osaa käyttää hyväkseen saatavilla olevia tietolähteitä sekä tehdä itsenäisiä ratkaisuja jossain määrin. Palautettavat tehtävät tulee olla suoritettuina läpipääsyn tasolla.

Arviointikriteerit: taso 3 (arviointiasteikko 1-5)

Opiskelija osaa käyttää itsenäisesti hyväkseen ja soveltaa käytettävissä olevia tietolähteitä.
Palautettavat tehtävät tulee olla suoritettuina siten, että ne ovat tehtäväksiannon mukaisesti oikein ja hyväksytysti suoritettuina.

Arviointikriteerit: taso 5 (arviointiasteikko 1-5)

Opiskelija osaa käyttää hyväkseen, kriittisesti arvioida ja soveltaa käytettävissä olevia tietolähteitä.
Opiskelijalta vaaditaan aktiivista osallistumista keskusteluun, hän on positiivinen keskutelukumppani sekä edistää keskustelua olennaiseen suuntaan ja perustelee mielipiteensä.
Palautettavat tehtävät tulee olla suoritettuina siten, että ne ylittävät annetun tehtäväksiannon tavoitteet.

Ilmoittautumisaika

06.05.2024 - 30.08.2024

Ajoitus

04.11.2024 - 07.11.2024

Opintopistemäärä

5 op

Virtuaaliosuus

5 op

Toteutustapa

Etäopetus

Yksikkö

Teknologia (LAB)

Toimipiste

Verkkokampus, Lahti

Opetuskielet
  • Suomi
Paikat

5 - 40

Koulutus
  • Tekniikan koulutus (ylempi AMK), IoT:stä tekoälyyn
Opettaja
  • Matti Welin
  • Minna Asplund
  • Rami Viksilä
Opetusryhmät
  • Luennot 1 (Koko: 100. Avoin AMK: 0.)
Ryhmät
  • TLTIYITT24KV
    IoT:stä tekoälyyn (YAMK) 24KV Lahti
Pienryhmät
  • Luennot 1

Osaamistavoitteet

Opiskelija osaa
- tunnistaa neuroverkkojen ja syväoppimisen tärkeimmät ominaisuudet
- tutkia hyperparametreja, aktivaatiofunktioita ja neuroverkkojen topologiaa
- käsitellä piilotettuja kerroksia sekä ennustaa olemassa olevan datan avulla
- ottaa huomioon resurssien käytön sekä tekoälyn eettiset näkökulmat

Toteutustapa ja opetusmenetelmät

Kurssi toteutetaan neljän päivän intensiiviopetuksena.
Opetusmenetelminä käytetään lähiopetusta luennoiden, sekä esimerkkeihin perustuvia soveltavia harjoituksia. Mahdollisuuksien mukaan myös äänitteitä.

Ajoitus ja läsnäolo

Intensiivijakso on ma 4.11.2024 - to 7.11.2024.
Intensiiviviikolla läsnäolo on suotavaa.

Oppimateriaali ja suositeltava kirjallisuus

Opiskelija etsii itsenäisesti sekä kirjallisuuslähteitä että internetin kautta löydettävissä olevia luotettavia lähteitä. Opintojaksolla on esitysmateriaalia.

Uusintamahdollisuudet

Opintojaksolla ei ole tenttiä.

Oppimisympäristö

Kurssin informointi - ja järjestely-ympäristönä käytetään virtuaalista Moodle verkko-oppimisalustaa.

Opiskelijan ajankäyttö ja kuormitus

Yhteisiä tunteja on noin 24. Kokonaisajankäyttö opiskelijalle on mitoitettu keskimäärin 135 tunniksi.

Lisätietoja opiskelijalle: mm. edeltävä osaaminen

Edeltävä osaaminen:
- Lukion lyhyttä matematiikkaa vastaava osaaminen.
- Ohjelmoinnin perusteet tai vastaava osaaminen.
- Datan analysointi ja visualisointi, tai vastaava osaaminen.
- Koneoppiminen tai vastaava osaaminen.

Arviointimenetelmät

Arvioinnin perusteena käytetään opintojaksolla tehtäväksi annettujen tehtävien suorittamisen tasoa.

Arviointiasteikko

1-5

Hylätty (0)

Opiskelija ei ole saavuttanut opintojakson osaamistavoitteita.

Arviointikriteerit: taso 1: (arviointiasteikko 1-5)

Opiskelija osaa käyttää hyväkseen saatavilla olevia tietolähteitä sekä tehdä itsenäisiä ratkaisuja jossain määrin.
Palautettavat tehtävät tulee olla suoritettuina läpipääsyn tasolla.

Arviointikriteerit: taso 3 (arviointiasteikko 1-5)

Opiskelija osaa käyttää itsenäisesti hyväkseen ja soveltaa käytettävissä olevia tietolähteitä.
Palautettavat tehtävät tulee olla suoritettuina siten, että ne ovat tehtäväksiannon mukaisesti oikein ja hyväksytysti suoritettuina.

Arviointikriteerit: taso 5 (arviointiasteikko 1-5)

Opiskelija osaa käyttää hyväkseen, kriittisesti arvioida ja soveltaa käytettävissä olevia tietolähteitä.
Opiskelijalta vaaditaan aktiivista osallistumista keskusteluun, hän on positiivinen keskutelukumppani sekä edistää keskustelua olennaiseen suuntaan ja perustelee mielipiteensä.
Palautettavat tehtävät tulee olla suoritettuina siten, että ne ylittävät annetun tehtäväksiannon tavoitteet.

Ilmoittautumisaika

06.05.2024 - 30.08.2024

Ajoitus

30.09.2024 - 03.10.2024

Opintopistemäärä

5 op

Virtuaaliosuus

5 op

Toteutustapa

Etäopetus

Yksikkö

Teknologia (LAB)

Toimipiste

Verkkokampus, Lahti

Opetuskielet
  • Suomi
Paikat

5 - 40

Koulutus
  • Tekniikan koulutus (ylempi AMK), IoT:stä tekoälyyn
Opettaja
  • Matti Welin
  • Minna Asplund
  • Rami Viksilä
Opetusryhmät
  • Luennot 1 (Koko: 100. Avoin AMK: 0.)
Ryhmät
  • TLTIYITT24KV
    IoT:stä tekoälyyn (YAMK) 24KV Lahti
Pienryhmät
  • Luennot 1

Osaamistavoitteet

Opiskelija osaa
- käyttää hyväkseen sekä ohjattua sekä ohjaamatonta koneoppimista tarkoituksenmukaisella tavalla
- toteuttaa koneoppimismallin sovittamisen
- hyödyntää datapohjaista päätöksentekoa
- vertailla laitteistoja, ohjelmistoja ja kehitysympäristöjä erilaisiin koneoppimista hyödyntäviin sovelluksiin

Toteutustapa ja opetusmenetelmät

Kurssi toteutetaan neljän päivän intensiiviopetuksena.
Opetusmenetelminä käytetään lähiopetusta luennoiden, sekä esimerkkeihin perustuvia soveltavia harjoituksia. Mahdollisuuksien mukaan myös äänitteitä.

Ajoitus ja läsnäolo

Intensiivijakso on viikolla 40, ma 30.9.2024 - to 3.10.2024.
Intensiivijaksolla läsnäolo on suotavaa.

Oppimateriaali ja suositeltava kirjallisuus

Opiskelija etsii itsenäisesti sekä kirjallisuuslähteitä että internetin kautta löydettävissä olevia luotettavia lähteitä. Opintojaksolla on esitysmateriaalia.

Uusintamahdollisuudet

Opintojaksolla ei ole tenttiä.

Oppimisympäristö

Kurssin informointi - ja järjestely-ympäristönä käytetään virtuaalista Moodle verkko-oppimisalustaa.

Opiskelijan ajankäyttö ja kuormitus

Yhteisiä tunteja on noin 24. Kokonaisajankäyttö opiskelijalle on mitoitettu keskimäärin 135 tunniksi.

Lisätietoja opiskelijalle: mm. edeltävä osaaminen

Edeltävä osaaminen:
- Lukion lyhyttä matematiikkaa vastaava osaaminen.
- Ohjelmoinnin perusteet tai vastaava osaaminen.
- Datan analysointi ja visualisointi, tai vastaava osaaminen.

Arviointimenetelmät

Arvioinnin perusteena käytetään opintojaksolla tehtäväksi annettujen tehtävien suorittamisen tasoa.

Arviointiasteikko

1-5

Hylätty (0)

Opiskelija ei ole saavuttanut opintojakson osaamistavoitteita.

Arviointikriteerit: taso 1: (arviointiasteikko 1-5)

Opiskelija osaa käyttää hyväkseen saatavilla olevia tietolähteitä sekä tehdä itsenäisiä ratkaisuja jossain määrin.
Palautettavat tehtävät tulee olla suoritettuina läpipääsyn tasolla

Arviointikriteerit: taso 3 (arviointiasteikko 1-5)

Opiskelija osaa käyttää itsenäisesti hyväkseen ja soveltaa käytettävissä olevia tietolähteitä.
Palautettavat tehtävät tulee olla suoritettuina siten, että ne ovat tehtäväksiannon mukaisesti oikein ja hyväksytysti suoritettuina.

Arviointikriteerit: taso 5 (arviointiasteikko 1-5)

Opiskelija osaa käyttää hyväkseen, kriittisesti arvioida ja soveltaa käytettävissä olevia tietolähteitä.
Opiskelijalta vaaditaan aktiivista osallistumista keskusteluun, hän on positiivinen keskutelukumppani sekä edistää keskustelua olennaiseen suuntaan ja perustelee mielipiteensä.
Palautettavat tehtävät tulee olla suoritettuina siten, että ne ylittävät annetun tehtäväksiannon tavoitteet.