Skip to main content

Bachelor’s Degree Programme in Mechanical Engineering (2021, 2022, 2023)

Degree:
Bachelor of Engineering

Degree title:
Insinööri (AMK)

Credits:
240 ects

Bachelor of Engineering, Mechanical Engineering 22S, Double Degree, Lappeenranta
Code
(TLPRMECDD22S)

Bachelor of Engineering, Mechanical Engineering 22S, full-time studies, Lappeenranta
Code
(TLPRMEC22S)

Bachelor of Engineering, Mechanical Engineering 23K, Double Degree, Lappeenranta
Code
(TLPRMECDD23K)
Bachelor of Engineering, Mechanical Engineering 21S, full-time studies, Lappeenranta
Code
(MEC21SLPR)
Enrollment

15.05.2023 - 01.09.2023

Timing

01.08.2023 - 30.04.2024

Number of ECTS credits allocated

15 op

Mode of delivery

Contact teaching

Unit

Faculty of Technology (LAB)

Campus

Lappeenranta Campus

Teaching languages
  • English
Degree programmes
  • Bachelor’s Degree Programme in Mechanical Engineering (2021, 2022, 2023)
Teachers
  • Jouni Könönen
Scheduling groups
  • Project work (Size: 0. Open UAS: 0.)
Groups
  • TLPRMEC22S
  • TLPREX23SM
Small groups
  • Project work

Learning outcomes

The student
- is able to apply more deeply acquired theoretical knowledge in real working life projects.
- understands the role of technical documentation and is also able to create documents according to standards.
- is able to design a PLC-based automation system, simulate its operation and select suitable components for the system.

Implementation and methods of teaching

Lectures, exercises, exam, returnable assignments.

Learning material and recommended literature

Study material will be announced at the beginning of the course.
Material to be distributed on the course website.

Contents

The student
- is able to apply more deeply acquired theoretical knowledge in real working life projects.
- understands the role of technical documentation and is also able to create documents according to standards.
- is able to design a PLC-based automation system, simulate its operation and select suitable components for the system.

Assessment criteria

Basic level (1-2): the student can implement a simple piece goods automation application using programmable logic software.

Good level (3-4):The student can implement a more advanced piece goods automation application using programmable logic software.

Excellent level (5): The student is able to implement a complex piece goods automation application using programmable logic software.

Assessment scale

1-5

Failed (0)

Level 1 of the competences described below is not met.

Assessment criteria: level 1 (assessment scale 1–5)

The student will be able to implement a simple piece goods automation application using programmable logic software.

Participates actively in class (80% of the classroom teaching) and successfully completes the exercises according to the given schedule.

Assessment criteria: level 3 (assessment scale 1–5)

The student is able to implement a more advanced piece goods automation application with programmable logic software.

Actively participates in class (80% of the classroom teaching) and successfully completes the exercises according to the given timetable.

Assessment criteria: level 5 (assessment scale 1–5)

The student will be able to implement a complex piece goods automation application using programmable logic software.

Actively participates in class (80% of the classroom time) and successfully completes the exercises according to the given schedule.

Willing to guide others in solving problems.

Enrollment

15.05.2023 - 01.09.2023

Timing

01.08.2023 - 31.12.2023

Number of ECTS credits allocated

15 op

Mode of delivery

Contact teaching

Unit

Faculty of Technology (LAB)

Campus

Lappeenranta Campus

Teaching languages
  • English
Degree programmes
  • Bachelor’s Degree Programme in Mechanical Engineering (2021, 2022, 2023)
Groups
  • TLPRMEC20S

Learning outcomes

The student is able to
- apply the acquired theoretical knowledge to the problems and phenomena of the working life
- solve problems, organise and perceive wholes
- work interactively, tenaciously and systematically
- work according to the practices of their own line of trade
- gather information and evaluate sources critically
- report their work orally, in writing and visually

Assessment scale

1-5

Enrollment

15.05.2023 - 01.09.2023

Timing

01.08.2023 - 30.04.2024

Number of ECTS credits allocated

15 op

Mode of delivery

Contact teaching

Unit

Faculty of Technology (LAB)

Campus

Lappeenranta Campus

Teaching languages
  • English
Degree programmes
  • Bachelor’s Degree Programme in Mechanical Engineering (2021, 2022, 2023)
Teachers
  • Mika Neuvonen
  • Jouni Könönen
  • Simo Sinkko
Scheduling groups
  • Lectures (Size: 0. Open UAS: 0.)
Groups
  • TLPRMEC22S
  • TLPREX23SM
Small groups
  • Lectures

Learning outcomes

The student
- knows the main application areas of automation and understands the overview of the industry.
- is able to name different components of hydraulic and pneumatic systems.
- is able to make and connect hydraulic and pneumatic connections and design hydraulic and pneumatic circuits.
- is able to build and simulate a simple PLC based automation system.
- know the differences between automation solutions in different application areas of automation (especially process and piece goods automation) and the structures and main functions of automation systems.

Implementation and methods of teaching

Lectures, exercises, exam, returnable assignments.

Learning material and recommended literature

Study material will be announced at the beginning of the course.
Material to be distributed on the course website.

Contents

The student
- knows the main application areas of automation and understands the overview of the industry.
- is able to name different components of hydraulic and pneumatic systems.
- is able to make and connect hydraulic and pneumatic connections and design hydraulic and pneumatic circuits.
- is able to build and simulate a simple PLC based automation system.
- know the differences between automation solutions in different application areas of automation
(especially process and piece goods automation) and the structures and main functions of
automation systems.

Assessment criteria

Basic level (1-2): the student can implement a simple piece goods automation application using programmable logic software, utilizing electro pneumatics / hydraulics.

Good level (3-4):The student will be able to implement a more advanced piece goods automation application using programmable logic software.

Excellent level (5): The student is able to implement a complex piece goods automation application using programmable logic software.

Assessment scale

1-5

Failed (0)

Level 1 of the competences described below is not met.

Assessment criteria: level 1 (assessment scale 1–5)

The student is able to implement a simple piece-rate automation application using programmable logic software.

Participates actively in class (80% of the classroom teaching) and successfully completes the exercises according to the given schedule.

Assessment criteria: level 3 (assessment scale 1–5)

The student is able to implement an application of piece goods automation beyond the previous level using programmable logic software.

Actively participates in class (80% of the classroom teaching) and successfully completes the exercises according to the given schedule.

Assessment criteria: level 5 (assessment scale 1–5)

The student is able to implement a complex piece goods automation application with programmable logic software.

Participates actively in class (80% of the classroom teaching) and successfully completes the exercises according to the given schedule.

Willing to guide others in solving problems.

Enrollment

15.05.2023 - 01.09.2023

Timing

04.09.2023 - 30.04.2024

Number of ECTS credits allocated

20 op

Mode of delivery

Contact teaching

Unit

Faculty of Technology (LAB)

Campus

Lappeenranta Campus

Teaching languages
  • English
Degree programmes
  • Bachelor’s Degree Programme in Mechanical Engineering (2021, 2022, 2023)
Teachers
  • Jukka Nisonen
  • Timo Ryynänen
  • Seppo Toivanen
Scheduling groups
  • Product Design (Size: 0. Open UAS: 0.)
  • Product Design (Size: 0. Open UAS: 0.)
  • Product Design (Size: 0. Open UAS: 0.)
Groups
  • TLPRMEC22S
  • TLPREX23SM
Small groups
  • Product Design
  • Product Design
  • Product Design

Learning outcomes

The student
- understands the meaning of tolerances and fits in mechanical engineering.
- knows the basic rules of designing products for manufacturing.
- is able to apply statics and mechanics of materials in the design and analysis of shafts, beams and columns.
- understands the role of dynamics and vibrations in mechanical engineering.
- Is able to use simulation software (FEM, Working Model)

Implementation and methods of teaching

Team based challenges.

Timing and attendance

Team based schedules.

Learning environment

Campus, JHC

Assessment criteria

Evaluation of learning process and output.

Assessment scale

1-5

Enrollment

15.05.2023 - 01.09.2023

Timing

04.09.2023 - 30.04.2024

Number of ECTS credits allocated

10 op

Mode of delivery

Contact teaching

Unit

Faculty of Technology (LAB)

Campus

Lappeenranta Campus

Teaching languages
  • English
Degree programmes
  • Bachelor’s Degree Programme in Mechanical Engineering (2021, 2022, 2023)
Teachers
  • Jukka Nisonen
  • Timo Ryynänen
  • Seppo Toivanen
Scheduling groups
  • Design and Manufacturing Project 2 (Size: 0. Open UAS: 0.)
Groups
  • TLPRMEC22S
  • TLPREX23SM
Small groups
  • Design and Manufacturing Project 2

Learning outcomes

The student
- is able to apply more profoundly the acquired theoretical knowledge to real work life projects.
- understands the role of technical documentation and is also able to create documents according to standards.
- is able to design a load-carrying structure (including manufacturing), e.g. a Jib Crane.

Implementation and methods of teaching

Team based challenges.

Timing and attendance

Team based schedules.

Learning environment

Campus, JHC

Assessment criteria

Evaluation of learning process and output.

Assessment scale

1-5

Enrollment

15.05.2023 - 01.09.2023

Timing

07.09.2023 - 15.12.2023

Number of ECTS credits allocated

12 op

Mode of delivery

Contact teaching

Unit

Faculty of Technology (LAB)

Campus

Lappeenranta Campus

Teaching languages
  • English
Degree programmes
  • Bachelor’s Degree Programme in Mechanical Engineering (2021, 2022, 2023)
Teachers
  • Jukka Nisonen
  • Timo Ryynänen
  • Seppo Toivanen
Scheduling groups
  • Product Design (Size: 0. Open UAS: 0.)
Groups
  • TLPREX23SM
  • TLPRMEC21S
Small groups
  • Product Design

Learning outcomes

The student
- understands the holistic nature of a machine design project.
- is able to figure out and put into practice all the relevant information and knowledge needed to conduct a design project (e.g. a scissor lift).
- is able to use simulation software (e.g. FEM) when designing a load-carrying machine element or a whole structure.
- is able to produce a written report of a design project (including technical drawings, technical calculations and a manufacturing plan)

Implementation and methods of teaching

Team based challenges

Timing and attendance

Team based schedules.

Learning environment

Campus, JHC

Assessment criteria

Evaluation of learning process and output.

Assessment scale

1-5

Enrollment

15.05.2023 - 01.09.2023

Timing

01.08.2023 - 31.07.2024

Number of ECTS credits allocated

1 op

Mode of delivery

Contact teaching

Unit

Faculty of Technology (LAB)

Campus

Lappeenranta Campus

Teaching languages
  • English
Degree programmes
  • Bachelor’s Degree Programme in Mechanical Engineering (2021, 2022, 2023)
Teachers
  • Seppo Toivanen
Groups
  • TLPRMEC22S

Learning outcomes

The student is able to
- utilize various learning opportunities in curriculum
- recognize and aim their own competences to be in level with the future career requirements
- create a study plan that supports the future career goal
- give feedback on tuition and services and thus participate in the development of education

Implementation and methods of teaching

Lecturing, discussions, group work and individual assignments

Learning material and recommended literature

Teacher collects material and publishes in the course platform

Alternative completion methods

To be agreed with the teacher

Learning environment

Virtual course

Contents

The student is able to:
· monitor the progress of his / her own studies in electronic systems
· deepen his / her own skills
· promote his / her own competence in accordance with the career plan
· evaluate services and collaborate for training development

Additional information for students: previous knowledge etc.

Developing Professional Competence 1

Assessment scale

Approved/Failed

Failed (0)

Assignments not done during the course time.

Assessment criteria: level 1 (assessment scale 1–5)

not in use in this course

Assessment criteria: level 3 (assessment scale 1–5)

not in use in this course

Assessment criteria: level 5 (assessment scale 1–5)

not in use in this course

Enrollment

15.05.2023 - 01.09.2023

Timing

01.08.2023 - 31.07.2024

Number of ECTS credits allocated

1 op

Mode of delivery

Contact teaching

Unit

Faculty of Technology (LAB)

Campus

Lappeenranta Campus

Teaching languages
  • English
Degree programmes
  • Bachelor’s Degree Programme in Mechanical Engineering (2021, 2022, 2023)
Teachers
  • Seppo Toivanen
Groups
  • TLPRMEC21S

Learning outcomes

The student is able to
- identify themselves as a learner and develop their own learning skills
- evaluate innovative or alternative future competences required in their own field
- recognize and aim their own competences to be in level with the future career requirements
- masters the professional concepts of their own field and is able to point out their competencies during job recruitment processes
- give feedback on tuition and services and thus participate in the development of education

Implementation and methods of teaching

PSP – Personal study plan -discussion
Own future planning
– options for continuous learning after graduation
– career services, employment portals
- network development

Timing and attendance

Virtual sessions + a personal discussion with the tutor teacher

Working life cooperation

Company representative visitors eg. from recruitment field

Learning environment

LUT Moodle

Student time use and work load

1 ect = 27 working hours

Contents

professional ethics
harassment awareness and prevention in working life
life long learning possibilities and possibilities to continue studies

Additional information for students: previous knowledge etc.

Developing professional competencies 1 & 2

Assessment scale

Approved/Failed

Failed (0)

Non appearance
Undone assignments

Enrollment

15.05.2023 - 01.09.2023

Timing

01.08.2023 - 31.12.2023

Number of ECTS credits allocated

15 op

Mode of delivery

Contact teaching

Unit

Faculty of Technology (LAB)

Campus

Lappeenranta Campus

Teaching languages
  • English
Degree programmes
  • Bachelor’s Degree Programme in Mechanical Engineering (2021, 2022, 2023)
Teachers
  • Jukka Nisonen
  • Timo Ryynänen
  • Seppo Toivanen
Groups
  • TLPRMEC21S
  • TLPREX23SM

Learning outcomes

The student
- understands the basic principles and the main process of Finite Element Method (FEM).
- understands the function and the use of the most important machine elements.
- is able to carry out fundamental technical calculations related to machine elements.
- understands the importance of vibrations in machines and fatigue as a primary possible failure mode for a machine element.

Implementation and methods of teaching

Team based challenges.

Timing and attendance

Team based schedules.

Learning environment

Campus, JHC

Assessment criteria

Evaluation of learning process and output.

Assessment scale

1-5

Enrollment

15.05.2023 - 01.09.2023

Timing

01.08.2023 - 31.12.2023

Number of ECTS credits allocated

3 op

Mode of delivery

Contact teaching

Unit

Faculty of Technology (LAB)

Campus

Lappeenranta Campus

Teaching languages
  • Finnish
Seats

1 - 100

Degree programmes
  • Bachelor’s Degree Programme in Mechanical Engineering (2021, 2022, 2023)
Teachers
  • Päivi Porras
Scheduling groups
  • Lectures (Size: 0. Open UAS: 0.)
Groups
  • TLPRMEC22S
  • TLPREX23SM
Small groups
  • Lectures

Learning outcomes

Student is able to:
- derivate functions and utilise derivation in practice
- integrate polynomial functions and utilise integration in practice
- solve other equations and trigonometrical problems

Implementation and methods of teaching

This course has contact lectures but material enables studying also at own pace. However, questions are answered during the contact lectures, not by email.

Learning material and recommended literature

All material is available in moodle.

Contents

- Composite and inverse functions
- Trigonometric functions and equations
- Derivatives of polynomial and rational functions
- Derivatives of exponential and logarithmic functions
- Derivatives of trigonometric and arc functions
- Extremes
- Integrals of polynomial functions
- Area with integrals
- Volume with integrals

Additional information for students: previous knowledge etc.

Mathematics in Technology 1 or corresponding knowledge.

Assessment criteria

Exercises and tests

Assessment scale

1-5

Failed (0)

A student cannot solve mechanical exercises well enough. Less than 33% of maximum scores.

Assessment criteria: level 1 (assessment scale 1–5)

A student knows methods for geometry in plain and for vectors in plain and can solve simple mechanical exercises.

Assessment criteria: level 3 (assessment scale 1–5)

A student understands requirements of geometry and vectors in plain and is able to apply them in some extent in engineering problems. At least 57% of maximum scores.

Assessment criteria: level 5 (assessment scale 1–5)

A student masters geometry and vectors in plain and is able to analyze engineering problems. At least 83 % of maximum scores.

Enrollment

06.05.2024 - 30.08.2024

Timing

01.08.2024 - 31.12.2024

Number of ECTS credits allocated

12 op

Mode of delivery

Contact teaching

Unit

Faculty of Technology (LAB)

Campus

Lappeenranta Campus

Teaching languages
  • English
Degree programmes
  • Bachelor’s Degree Programme in Mechanical Engineering (2021, 2022, 2023)
Teachers
  • Timo Ryynänen
  • Seppo Toivanen
  • Tapani Heikkilä
Scheduling groups
  • Toteutuksen opetusryhmä 1 (Size: 0. Open UAS: 0.)
Groups
  • TLPRMEC22S
  • TLPREX24SM
Small groups
  • Scheduling group 1

Learning outcomes

The student
- understands the holistic nature of a machine design project.
- is able to figure out and put into practice all the relevant information and knowledge needed to conduct a design project (e.g. a scissor lift).
- is able to use simulation software (e.g. FEM) when designing a load-carrying machine element or a whole structure.
- is able to produce a written report of a design project (including technical drawings, technical calculations and a manufacturing plan)

Implementation and methods of teaching

Team based challenges

Timing and attendance

Team based schedules.

Learning environment

Campus, JHC

Assessment criteria

Evaluation of learning process and output.

Assessment scale

1-5

Enrollment

06.05.2024 - 30.08.2024

Timing

01.08.2024 - 31.07.2025

Number of ECTS credits allocated

1 op

Mode of delivery

Contact teaching

Unit

Faculty of Technology (LAB)

Campus

Lappeenranta Campus

Teaching languages
  • English
Degree programmes
  • Bachelor’s Degree Programme in Mechanical Engineering (2021, 2022, 2023)
Teachers
  • Seppo Toivanen
  • Tapani Heikkilä
Groups
  • TLPRMEC22S

Learning outcomes

The student is able to
- identify themselves as a learner and develop their own learning skills
- evaluate innovative or alternative future competences required in their own field
- recognize and aim their own competences to be in level with the future career requirements
- masters the professional concepts of their own field and is able to point out their competencies during job recruitment processes
- give feedback on tuition and services and thus participate in the development of education

Assessment scale

1-5

Enrollment

06.05.2024 - 30.08.2024

Timing

02.09.2024 - 20.12.2024

Number of ECTS credits allocated

15 op

Mode of delivery

Contact teaching

Unit

Faculty of Technology (LAB)

Campus

Lappeenranta Campus

Teaching languages
  • English
Degree programmes
  • Bachelor’s Degree Programme in Mechanical Engineering (2021, 2022, 2023)
Teachers
  • Timo Ryynänen
  • Seppo Toivanen
Scheduling groups
  • Harjoitukset (Size: 0. Open UAS: 0.)
Groups
  • TLPRMEC22S
Small groups
  • Practice

Learning outcomes

The student
- understands the basic principles and the main process of Finite Element Method (FEM).
- understands the function and the use of the most important machine elements.
- is able to carry out fundamental technical calculations related to machine elements.
- understands the importance of vibrations in machines and fatigue as a primary possible failure mode for a machine element.

Implementation and methods of teaching

Team based challenges.

Timing and attendance

Team based schedules.

Learning environment

Campus, JHC

Assessment criteria

Evaluation of learning process and output.

Assessment scale

1-5