Mathematics in Technology 2Laajuus (3 cr)
Code: AT00CH49
Credits
3 op
Teaching language
- English
Responsible person
- Päivi Porras
Objective
Student is able to:
- derivate functions and utilise derivation in practice
- integrate polynomial functions and utilise integration in practice
- solve other equations and trigonometrical problems
Enrollment
06.05.2024 - 30.08.2024
Timing
09.09.2024 - 20.12.2024
Number of ECTS credits allocated
3 op
Virtual portion
3 op
Mode of delivery
Distance learning
Unit
Faculty of Technology (LAB)
Campus
E-campus
Teaching languages
- English
Seats
1 - 100
Degree programmes
- Bachelor’s Degree Programme in Sustainable Solutions Engineering
Teachers
- Päivi Porras
Scheduling groups
- Online lecture (Size: 0. Open UAS: 0.)
Groups
-
TLTISSE23SVBachelor’s Degree Programme in Sustainable Solutions Engineering 23SV Lahti
Small groups
- Online lecture
Learning outcomes
Student is able to:
- derivate functions and utilise derivation in practice
- integrate polynomial functions and utilise integration in practice
- solve other equations and trigonometrical problems
Implementation and methods of teaching
This course has contact lectures but material enables studying also at own pace. However, questions are answered during the contact lectures, not by email.
Learning material and recommended literature
All material is available in moodle.
Contents
- Composite and inverse functions
- Trigonometric functions and equations
- Derivatives of polynomial and rational functions
- Derivatives of exponential and logarithmic functions
- Derivatives of trigonometric and arc functions
- Extremes
- Integrals of polynomial functions
- Area with integrals
- Volume with integrals
Additional information for students: previous knowledge etc.
Mathematics in Technology 1 or corresponding knowledge.
Assessment criteria
Exercises and tests
Assessment scale
1-5
Failed (0)
A student cannot solve mechanical exercises well enough. Less than 33% of maximum scores.
Assessment criteria: level 1 (assessment scale 1–5)
A student knows methods for geometry in plain and for vectors in plain and can solve simple mechanical exercises.
Assessment criteria: level 3 (assessment scale 1–5)
A student understands requirements of geometry and vectors in plain and is able to apply them in some extent in engineering problems. At least 57% of maximum scores.
Assessment criteria: level 5 (assessment scale 1–5)
A student masters geometry and vectors in plain and is able to analyze engineering problems. At least 83 % of maximum scores.
Enrollment
06.05.2024 - 30.08.2024
Timing
01.08.2024 - 31.12.2024
Number of ECTS credits allocated
3 op
Mode of delivery
Contact teaching
Unit
Faculty of Technology (LAB)
Campus
Lappeenranta Campus
Teaching languages
- Finnish
Degree programmes
- Bachelor’s Degree Programme in Industrial Mechanical Engineering
Teachers
- Timo Ryynänen
- Seppo Toivanen
- Tapani Heikkilä
Groups
-
TLPRMEC23S
Learning outcomes
Student is able to:
- derivate functions and utilise derivation in practice
- integrate polynomial functions and utilise integration in practice
- solve other equations and trigonometrical problems
Implementation and methods of teaching
This course will be completed with an integration for student projects. When these projects have calculation needs and calculation skill requirements, these competences will be evaluated via these credits.
Assessment scale
1-5
Enrollment
15.05.2023 - 01.09.2023
Timing
04.09.2023 - 31.12.2023
Number of ECTS credits allocated
3 op
Virtual portion
3 op
Mode of delivery
Distance learning
Unit
Faculty of Technology (LAB)
Campus
E-campus
Teaching languages
- English
Seats
1 - 100
Degree programmes
- Bachelor’s Degree Programme in Sustainable Solutions Engineering
Teachers
- Päivi Porras
Scheduling groups
- Online lectures (Size: 0. Open UAS: 0.)
Groups
-
TLTISSE22SV
-
TLTIEX23S1
Small groups
- Online lectures
Learning outcomes
Student is able to:
- derivate functions and utilise derivation in practice
- integrate polynomial functions and utilise integration in practice
- solve other equations and trigonometrical problems
Implementation and methods of teaching
This is an online course of Mathematics in Technology 2.
The course can be studied at own pace but lectures are once a week on Mondays at 10.15am - 11.45am.
Learning material and recommended literature
All material is available in Moodle.
Contents
- Composite and inverse functions
- Trigonometric functions and equations
- Derivatives of polynomial and rational functions
- Derivatives of exponential and logarithmic functions
- Derivatives of trigonometric and arc functions
- Extremes
- Integrals of polynomial functions
- Area with integrals
- Volume with integrals
Additional information for students: previous knowledge etc.
Mathematics in Technology 1 or corresponding knowledge.
Assessment criteria
Exercises and tests
Assessment scale
1-5
Failed (0)
A student cannot solve mechanical exercises well enough. Less than 33% of maximum scores.
Assessment criteria: level 1 (assessment scale 1–5)
A student knows methods for geometry in plain and for vectors in plain and can solve simple mechanical exercises.
Assessment criteria: level 3 (assessment scale 1–5)
A student understands requirements of geometry and vectors in plain and is able to apply them in some extent in engineering problems. At least 57% of maximum scores.
Assessment criteria: level 5 (assessment scale 1–5)
A student masters geometry and vectors in plain and is able to analyze engineering problems. At least 83 % of maximum scores.
Enrollment
15.05.2023 - 01.09.2023
Timing
01.08.2023 - 31.12.2023
Number of ECTS credits allocated
3 op
Mode of delivery
Contact teaching
Unit
Faculty of Technology (LAB)
Campus
Lappeenranta Campus
Teaching languages
- Finnish
Seats
1 - 100
Degree programmes
- Bachelor’s Degree Programme in Mechanical Engineering (2021, 2022, 2023)
Teachers
- Päivi Porras
Scheduling groups
- Lectures (Size: 0. Open UAS: 0.)
Groups
-
TLPRMEC22S
-
TLPREX23SM
Small groups
- Lectures
Learning outcomes
Student is able to:
- derivate functions and utilise derivation in practice
- integrate polynomial functions and utilise integration in practice
- solve other equations and trigonometrical problems
Implementation and methods of teaching
This course has contact lectures but material enables studying also at own pace. However, questions are answered during the contact lectures, not by email.
Learning material and recommended literature
All material is available in moodle.
Contents
- Composite and inverse functions
- Trigonometric functions and equations
- Derivatives of polynomial and rational functions
- Derivatives of exponential and logarithmic functions
- Derivatives of trigonometric and arc functions
- Extremes
- Integrals of polynomial functions
- Area with integrals
- Volume with integrals
Additional information for students: previous knowledge etc.
Mathematics in Technology 1 or corresponding knowledge.
Assessment criteria
Exercises and tests
Assessment scale
1-5
Failed (0)
A student cannot solve mechanical exercises well enough. Less than 33% of maximum scores.
Assessment criteria: level 1 (assessment scale 1–5)
A student knows methods for geometry in plain and for vectors in plain and can solve simple mechanical exercises.
Assessment criteria: level 3 (assessment scale 1–5)
A student understands requirements of geometry and vectors in plain and is able to apply them in some extent in engineering problems. At least 57% of maximum scores.
Assessment criteria: level 5 (assessment scale 1–5)
A student masters geometry and vectors in plain and is able to analyze engineering problems. At least 83 % of maximum scores.
Enrollment
15.08.2022 - 04.09.2022
Timing
05.09.2022 - 16.12.2022
Number of ECTS credits allocated
3 op
Virtual portion
3 op
Mode of delivery
Distance learning
Unit
Faculty of Technology (LAB)
Campus
E-campus, Lahti
Teaching languages
- English
Degree programmes
- Bachelor’s Degree Programme in Sustainable Solutions Engineering
Teachers
- Päivi Porras
Scheduling groups
- Online (Size: 0. Open UAS: 0.)
Groups
-
TLTISSE21SV
Small groups
- Online
Learning outcomes
Student is able to:
- derivate functions and utilise derivation in practice
- integrate polynomial functions and utilise integration in practice
- solve other equations and trigonometrical problems
Implementation and methods of teaching
This is an online course of Mathematics in Technology 2.
The course can be studied at own pace but lectures are once a week on Wednesday at 2pm - 4pm.
Learning material and recommended literature
All material is available in moodle.
Contents
- Composite and inverse functions
- Trigonometric functions and equations
- Derivatives of polynomial and rational functions
- Derivatives of exponential and logarithmic functions
- Derivatives of trigonometric and arc functions
- Extremes
- Integrals of polynomial functions
- Area with integrals
- Volume with integrals
Additional information for students: previous knowledge etc.
Mathematics in Technology 1 or corresponding knowledge.
Assessment criteria
Exercises and tests
Assessment scale
1-5
Failed (0)
A student cannot solve mechanical exercises well enough. Less than 33% of maximum scores.
Assessment criteria: level 1 (assessment scale 1–5)
A student knows methods for geometry in plain and for vectors in plain and can solve simple mechanical exercises.
Assessment criteria: level 3 (assessment scale 1–5)
A student understands requirements of geometry and vectors in plain and is able to apply them in some extent in engineering problems. At least 57% of maximum scores.
Assessment criteria: level 5 (assessment scale 1–5)
A student masters geometry and vectors in plain and is able to analyze engineering problems. At least 83 % of maximum scores.
Enrollment
01.07.2022 - 04.09.2022
Timing
29.08.2022 - 16.12.2022
Number of ECTS credits allocated
3 op
Mode of delivery
Contact teaching
Unit
Faculty of Technology (LAB)
Campus
Lappeenranta Campus
Teaching languages
- Finnish
Degree programmes
- Bachelor's Degree Programme in Mechanical Engineering and Production Technology (2016-2021)
Teachers
- Päivi Porras
Scheduling groups
- Lectures (Size: 0. Open UAS: 0.)
Groups
-
TLPRIIT21S
-
TLPRMEC21S
Small groups
- Lectures
Learning outcomes
Student is able to:
- derivate functions and utilise derivation in practice
- integrate polynomial functions and utilise integration in practice
- solve other equations and trigonometrical problems
Implementation and methods of teaching
This course has contact lectures but material enables studying also at own pace. However, questions are answered during the contact lectures, not by email.
Learning material and recommended literature
All material is available in moodle.
Contents
- Composite and inverse functions
- Trigonometric functions and equations
- Derivatives of polynomial and rational functions
- Derivatives of exponential and logarithmic functions
- Derivatives of trigonometric and arc functions
- Extremes
- Integrals of polynomial functions
- Area with integrals
- Volume with integrals
Additional information for students: previous knowledge etc.
Mathematics in Technology 1 or corresponding knowledge.
Assessment criteria
Exercises and tests
Assessment scale
1-5
Failed (0)
A student cannot solve mechanical exercises well enough. Less than 33% of maximum scores.
Assessment criteria: level 1 (assessment scale 1–5)
A student knows methods for geometry in plain and for vectors in plain and can solve simple mechanical exercises.
Assessment criteria: level 3 (assessment scale 1–5)
A student understands requirements of geometry and vectors in plain and is able to apply them in some extent in engineering problems. At least 57% of maximum scores.
Assessment criteria: level 5 (assessment scale 1–5)
A student masters geometry and vectors in plain and is able to analyze engineering problems. At least 83 % of maximum scores.